Simple Intuitive Models of Programming

R. C. Tausworthe
DSN Data Systems Development Section

This article hypothesizes that mathematical models of the programming process
can be formulated to gauge the sensitivities of that process to various given
parameters, and that such models can be calibrated on an empirical basis and
used as guides toward maximizing productivity, documentation quality, and
programming reliability. The article then presents three oversimplified models as

illustrations.

l. Introduction

The computer is a medium of artistic expression in the
hands of a creator; it permits its user to fulfill, to the
maximum extent of his human capability to communicate,
almost any computational desire which can be codified
into a programming language. And so, programming is
truly an art form for many who are afforded the luxury
of such a willing servant, but with little obligation to
produce something industrially useful. To those of us,
however, who view the computer as a tool, an integral
part of our daily lives for the accomplishment of organiza-
tional goals and for the solution of problems we were
hired to solve, the “art” of programming needs to be a
science, or at least an engineering ‘discipline.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

There are many of us who classify ourselves as “non-
professional programmers,” but who have used program-
ming as a research tool (in the author’s case, to probe
communications-theoretic problems, such as the threshold
behavior of phase-locked receivers, the design of plane-
tary ranging systems, the performance characteristics of
telemetry systems, and so forth). The power of computers
to describe, model, simulate, and solve very complicated
mathematical problems has, in effect, catapulted the fron-
tiers of science, so that we can now not only predict
systems performance with amazing accuracy, but also
optimize systems parameters to enhance that performance.

To develop a mathematical model which portrays a
system and predicts, with some degree of fidelity, its per-

85

formance figure of merit, is a matter of professional train-
ing and the application of that training in a disciplined
approach to problem solving. Standard mathematical
techniques aided by computers normally yield system
parameters which produce optimum or enhanced perfor-
mance, if any such parameters exist on a practical basis.

Even when systems have a stochastic element in them
(such as those found in space communications), their
performance can be quantified: one learns to cope with
randomness on an everyday, friendly basis, because even
randomness exhibits certain reliable macroscopic regu-
larities, in spite of microscopic unpredictability. One
learns what things are mathematically ascertainable about
stochastic processes, and what things are not. One learns
to compensate, at the design level, for the adverse effects
of noise and randommess in communications channels,
through characterization of the environment in which
the communication must take place. Space communica-
tions is thus no longer an art, but a bona fide engineering
discipline.

Computer programming itself is a stochastic process,
just as much as deep-space communications is, and per-
haps more. However, to my knowledge, it has not been
studied as such, nor characterized as fully as it needs to
be to lift it from the “art” category to the “discipline”
category. Whereas computer programs have been written
to describe, model, and/or simulate very complicated
mathematical problems and almost every other conceiv-
able kind of system and/or process, there does not seem
to be much effort in developing a mathematical theory
or computer program which explains what is knowable
about the process of programming. There are, however,
some models of program reliability [1,2].

Many have perhaps scoffed at the prospects for formal-
izing the analysis of programming, both as a mathe-
matical possibility, as well as an enterprise from which
any useful information could be gained. Nevertheless, it
is the hypothesis of this paper that mathematical models
of the programming process can be formulated to gauge
the sensitivities of that process to various given parame-
ters. Such models can be calibrated on an empirical basis
and used as guides toward maximizing productivity,
documentation quality, and programming reliability. .

The first steps in demonstrating this hypothesis are to
characterize some of the measurable aspects of software
development and to postulate how various of the parame-
ters correlate with one another and with reality.

86

Il. Mathematical Modeling

Models of complex systems are seldom exact, especially
when there are unknown factors. In such cases, the an-
swers obtained must be weighed against intuition and
observable data. Interpretations of results obtained from
a model are often used to build levels of intuition; how-
ever, one must trust intuition only insofar as it reinforces
physical evidence or aids in the creation of a more ade-
quate mathematical model, or explains results coming
from that model.

At times, it will be necessary to make outlandish simpli-
fying assumptions just to arrive at an approximate first
result. Such simplicity only tends to temper how much
one can believe about that which the model tells as a gen-
eral truth. If the response is favorable, then more detailed
theories can be sought, more complicated models devel-
oped, until answers are known in believable precision.

This article therefore develops three outlandish, simple
“beginning” models for certain aspects of the program-
ming process, based on intuitive hypotheses and intuitive
“proofs;” conclusions reached are therefore only approxi-
mate truths—but truths that are refinable by extended
modeling and measurement.

When more precise models of programming someday
come into existence, the process of programming can be
optimized more scientifically, Until then, we are stuck
with using more subjective means, opinion, and “gut-
feeling” intuition to better the process.

HI. Productivity Model

The first model is one of programming team efficiency.
Let us suppose that there are W workers in a team who
have just completed and delivered a documented, bug-
free program. Each worker has spent time T, i=1,--- \W
in the project, and each has an individual productivity
pi, i=1,--- W, expressed in some arbitrary common
team production units. The average time T spent by each
worker in the project is

T = (Tl + -+ Tw)/W
and the average individual productivity P, is
P[= (p1T1 + oot + PwTw)/TW

JPL DEEP SPACE NETWORK PROGRESS REPORT 42.33

Individual productivities p; are measures of how much
each worker has contributed to the deliverable final prod-
uct per unit of time when unencumbered by the team
structure. That is, when working alone, fully informed,
each worker is capable of turning out p; units per day.

However, for a team to function, there must (of neces-
sity) be some time spent in interfacing and coordinating
activities between workers, during which, nothing deliv-
erable is produced. This fraction of time thus constitutes
a loss factor insofar as productivity goes.

Let us suppose that each worker has spent only the
necessary fraction ¢;, i =1,--- W, of his time in such
activities, and that the remainder of his time was spent
producing at his normal, unencumbered rate. The aver-
age fractional time #{(W) spent in non-production is then
defined as the team-interaction factor,

W) = (p, Tty + -+ + puTywtw)/P,WT

The value of {W) is almost certainly an increasing func-
tion of W, since (intuitively) the more workers there are,
the more likely that interfaces between individuals will
exist.

The overall team production rate P; is now given by
the simple formula

P, = PW[1 — {W)]

This is a universal formula for team productivity, not
merely one applicable to programming efforts. The impli-
cations one may gain from it are thus widely applicable
to a multitude of management decisions concerning proj-
cct organization.

A. What Lessons Can Be Learned From This Model?

It is obvious from the P, equation that the critical
parameter is the team-interaction factor, which must be
kept as small as possible in order to maximize produc-
tivity (we did not need a mathematical model to tell us
this, but the equation above verifies our intuition very
well).

The team-production-rate equation shows very clearly
what a project manager can manipulate to optimize his
team’s effort. If he is interested in high efficiency, he
must attempt to keep #(W) low by structuring the jobs
into tasks which minimize the time each individual
spends in interfacing his product with those of the rest
of the team.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

If he is interested in having a job then proceed at its
highest rate, the manager must, in addition, choose the
proper number of workers (with the requisite skills).

To give a simple example, suppose a manager were to
divide a given programming development job, which
includes design, coding, testing, documenting, quality
assurance, and supervision functions into tasks such that
each worker must interface with every other worker. In
this case we can take

HW) = (W — 1)r

where 7 is the average time spent by each person inter-
facing with each of the others. The team production rate
equation

P, =PW[1 — (W — 1)7]

clearly has a maximum value (Fig. 1) as a function of
W, at

Wee = (1 + 7)/2r = 1/2¢
and the team efficiency at this figure is only
efficiency = (1 + 7)/2 =~ 50%

Adding more workers to a project already of size W,,,
slows things down!

This behavior parallels the “maximum power transfer”
law in electricity, and I refer to it as the “maximum team
production rate” law: A team producing at the fastest
rate humanly possible spends half its time coordinating
and interfacing. The law holds true not just in the simple
case we have assumed here, but also in any instance
where (W) is roughly proportional to W. Only when this
proportionality constant, r, can be made very small does
W, turn out to be so large as never to be attainable in
practice.

B. Maximizing Productivity

Having identified that it is the time spent in communi-
cating, interfacing, and integrating that lowers produc-
tivity (in this simple study), we can ask, what can be done
to counteract this lessened production rate? The answer
is simple in principle: organize personnel tasks into team
efforts which minimize the time individuals need to spend
interfacing (and redoing their work because of improper
interfacing). Said differently: break the job into pieces
which separate cleanly into parts which humans can han-
dle easily, and whose solution then fits together well into
an integrated whole.

87

Structured Programming (Ref. 3) using Chief Program-
mer Teams (Ref. 4) is one such concept which attempts to
do just this for production programming. The team is
divided into areas of expertise and the program is modu-
larized so that both program and personnel interfaces
are imposed top-down, in development sequence, and
documented directly in the program code.

A wider concept than the Structured Programming/
Chief Programmer Teams approach above, which ex-
tracts the essential features, but extends to a total devel-
opment, may be described as the top-down, hierarchic,
modular, structured approach to design, coding, testing,
and documentation (Ref. 5). In this discipline, the design
is created principally from the top-down in a modular
fashion, in which each module is expanded in detail at
cach succeeding hierarchic level. Each design module
can then be coded and tested, in that order. By making
the interfaces between personnel coincide with interfaces
between activities, and by making these interfaces be the
required documentation deliverables, concurrently pro-
duced along with the program, then such interfaces tend
to be totally productive, the documentation is forced to be
produced and sufficient, and management has visibility
into the software development process by merely monitor-
ing the interface activity.

C. Conclusions About Productivity

The conclusion at this point, then, is that the simple
one-parameter model of productivity explains the need
for an organized approach in defining the development
tecam makeup and in setting the software production
discipline. It further gives one who has not yet fully
appreciated the benefits of modern structured program-
ming reason to belicve that such methods can be made to
work for him or for his organization.

IV. Program Readability Model

The next model is one relating to the level of documen-
tation required for a program to be readable. Surely
“readability” is a highly subjective quantity, and probably
extremely variable across an ensemble of readers; but let
us address the response of an “average” reader, as if there
were one.

Let the program consist of L lines of compilable state-
ments, divided into “blocks” of approximately B lines
each. The uniform block size is somewhat artificial, but
makes the problem easier to grasp. Let us further suppose
that cach block is accompanied by documentation which

88

details its function i.e., a description of what the block
computes, or its purpose), and also then provides addi-
tional information, which I shall call the block rationale.
The latter contains descriptions of such things as the
assumed entry and exit conditions, the significance of cer-
tain operations within the block, and relationships among
data items. Such documentation may take the form of
comments inserted directly into the code, or as flowcharts
and narrative in some external document accompanying
the code, or any other form easily understood by the
intended readers.

The documentation level parameters of interest in the
model are

f = the fraction of blocks having a functional descrip-
tion

t = the fraction of a block’s total function described,
when given

r = the fraction of blocks having rationale supplied

q = the fraction of a block’s quantity of rationale
needed, when supplied.

Let it be assumed that functional and rationale descrip-
tions within each block can be separated so as to be inde-
pendent, nonoverlapping data about what is going on in
the code; that is, the functional description is to be devoid
of rationale, and vice versa. This is purcly a mathematical
necessity for what follows, and need not be in effect in
actual practice; in actuality, the two may be intermixed,
and correlated in any meaningful way.

There are several durations of interest when reading a

block:

T, = time to read and comprehend the action of
a line of code.

T, = time to read and comprehend a complete
function description.

T, = time to read and comprehend a complete
rationale description.

Ter(x) = time to create a fraction x of the missing
function description needed, from fraction
1 — x given.

Tr(x) = time to create a fraction x of missing ratio-
nale description needed, from fraction 1 — x
given.

The latter two time factors arise when there is something
missing that the reader needs, in order to understand the

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

program. If only a fraction ¢ of an entire functional
description is given, the remaining fraction 1 — ¢ must
be recreated by the reader if there is to be full under-
standing, and the same is true concerning rationale. Both
T r(0) and T (0) are zero, by definition.

In order to recreate missing material, the reader may
make inferences and analyses based on material supplied
as part of the given block, as well as material provided
outside that block. However, I will assume that a func-
tional description should pertain entirely to the code
within that block, and I shall therefore further assume
that the understanding of the functional behavior of a
block depends wholly on information supplied for that
block. Recreating rationale may, however, require infer-
ences based on information outside the block.

Now let us assume that if only a fraction ¢ of the com-
plete functional statement is given, then the time to read
that functional statement is tT'y, and let similar statements
describe the other reading times, as well. In such circum-
stances, the total average time required to read and
understand a block of code will be

Tw =BT, +fltTr - Ter(l —)] + (1 — f)Tes(1)
+rigTe + Tl — q)] + (1L — 1)Tee(1)

This expression is comprised of terms, in sequence, which
(1) relate the time to read the code in a block line-by-line;
(2) read a functional description, when it is given; (3) and
(4) recreate any missing functional information; (5) read
the rationale statement, when given; and (6) and (7)
recreate any missing rationale.

The same type of formula and parameters can also
probably be developed to describe how long it takes one
to develop a block of code in the first place, but I have
not explored such an equation, as yet.

A. Documentation of Block Function

Intuitively, the time to recreate a fraction x of the func-
tional description (by reading the code, head scratching,
etc.), must increase with x—the more there is missing, the
longer it takes to figure out what is going on. The curves
shown in Fig. 2 represent conceptual readability indices
associated with understandability of block function,

It seems intuitive that, for most computer languages,
there surely must exist some minimal block size By such
that T'» < T¢p(1), that is, such that the time to read and
understand a given complete, adequate functional de-

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

scription is less than the time it takes to divine that
function when no such statement is provided at all. (I shall
reexamine this hypothesis more a little later.) Based on
such a presumption, we may conclude that for all block
sizes B > By, the optimum value of f cannot be zero. That
is, some fraction f > 0 of the blocks should always have
some form of functional description, each with level of
detail ¢. A similar reasoning shows that if blocks are
larger than some value By, then some fraction r > 0 of
the blocks should always have rationale supplied.

By differentiation, we can next study the sensitivity of
T to the documentation-level parameters f, £, r, and q.
First, with respect to f (the density of functional descrip-
tions), to answer what density of the blocks should con-
tain functional statements:

%—B— =tT, — [Teo(1) = Teo(1 — 1)]

Since there is no dependency upon f in this derivative,

then T, takes its extreme values at either f =0 or f = 1.

For B > B,, the value f = 0 has been ruled out; in addi-

tion, since there exists a value of ¢t (namely ¢ = 1) such

that the derivative is negative, then T'; assurcdly is maxi-
mized at f = 1.

That is, for every program with block size B > B/,
every block should have a functional description. More-
over, if Ttp(1 —) = T, has a solution in (0,1), there may
be an optimum level of detail, ¢,,, < 1. Otherwise, the
function should be described completely (¢, = 1). The
sensitivity of T to t is gauged by

9T

ot

=T, —
f=1

er(l —t)

The shape of T..(x) is, of course, unknown; but one
may speculate on its form, and conceptually, measurc-
ments could even be made to determine the character-
istic. It seems reasonable that T.p(x) should have an
increasing positive derivative; that is, that the amount of
time required to figure something out should require a
disproportionately longer amount of time, the more that
there is to be figured out. If such were the case, and, in
addition, if T > T7,(0), then there will exist an optimum,
top < 1.

An optimum level of documentation detail ¢,,, less than
unity (total detail) appears at that point for which an
individual’s reasoning facility overtakes his reading com-
prehension speed. It is thus advisable to leave out obvious

89

details and easily understood, but difficult-to-explain con-
cepts from functional statements. Such are symptoms of
overdocumentation,

B. Documentation of Block Rationale

Considerations for rationale documentation in a pro-
gram run a parallel course to the functional documenta-
tion described above, but the rationale-recreation process
within the reader is a different mechanism, and thercfore
there are some differences in the level required.

For one thing, it seems intuitive that the time required
to understand the reasons for having a certain function,
and the significance and relationships of block operations,
variables, and data depend, to a great extent, on how
well one understands the entire program surrounding the
block (we have assumed function and rationale descrip-
tions are independent within a block, but this may not
necessarily hold globally).

Consequently, the time required to recreate any missing
rationale needed for understanding probably depends
both on g (the level of description detail in the rationale
provided) as well as r (the density of blocks outside the
block under scrutiny having rationale provided). In more
complicated models, it probably also depends on f and ¢
(and a number of other parameters), as well.

Investigation into proper levels for r and ¢ is thus more
intricate than the previous analysis, and, regretfully, too
lengthy for inclusion here. In fact, I have not yet carried
these to a point where meaningful conclusions can be
drawn. However, T conjecture that the answers must be
r=1,q = q., <1, just as was true for function: rationale
should accompany every block larger than some B, and
there will exist a level of detail at which reasoning rate
overtakes the rate at which the volume of material needed
can be read.

C. Self-documenting Programs

The reasoning above indicates that if functional blocks
are too large, then every block should possess both func-
tional and rationale descriptions. The equations also seem
to indicate, in addition, that below some critical block
size, no code documentation may be needed at all, other
than the code itself. However, such can be true only if
the program blocks are properly segmentized into under-
standable functional units and the rationale for and about
such functions is clear, from the code statements them-
sclves.

90

Is such a segmentation of a program possible? Is self-
documentation of program code (in a suitable higher-level
language) attainable?

The answer is probably, “No, not entirely.” But again,
top-down, hierarchic, modular, structured programming in
a language which permits long label names goes a long
way towards achieving this end. Program functional
blocks can be limited to a size conducive to understand-
ing, with a hierarchy of links to other functional (sub)
blocks.

Particularly, these functional blocks can be labeled,
using long enough labels, to state both the function and
rationale of each given block. Contrast, for example, the
following linkages to a subfunction invoked by the key-
word DO; the remaining text following each DO is the
subfunction label. The subfunction code is the same in
each case:

DO 3048,
DO S,
DO SORT;

DO BUBBLE SORT;

DO BUBBLE SORT ARRAY A OF SIZE N:

DO BUBBLE SORT ARRAY A OF SIZE N,
BECAUSE IT IS SIMPLEST AND FAST
ENOUGH HERE;

Similarly, contrast the following predicate tests, all of
which refer to the same condition:

IF(X>Y). ..

IF(VAL>MAX) . ..

IF(INPUT VALUE >MAXIMUM ALLOWED)

IF(INPUT IS TERMINATED AS SIGNALLED
BY AN INPUT VALUE GREATER THAN
THE MAXIMUM ALLOWED) ...

In the last example, the predicate statement may be real-
ized as a linkage to a subfunction (perhaps a macro)
which computes any of the first three predicates.

Studies (Refs. 6 and 7) have indicated that the opti-
mum block-size with respect to intellectual manageability
and comprehension, contains between 5 and 10 elements.
Hence, if self-documentation is attainable, the program
blocks should probably be no larger than this size.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

D. Conclusions About Readability

The conclusions drawn from the readability model are
that, if functional blocks are too large, then they must
always have functional and (probably) rationale descrip-
tions. Functional blocks falling below a certain critical
size have the potentiality of being self-documenting.
Finally, top-down, hierarchic, modular, structured pro-
gramming using long descriptive names for subfunctions
and operations provides a means whereby this potential
is largely achievable.

V. Program Development Model

The final model I give here is one dealing with how
programs should be developed (top-down, bottom-up,
inside-out, etc.) so as to minimize the programming costs.
The first step toward developing the program model is to
depict the program as a sequence of control graphs; each
graph represents the set of program blocks at a given
time as nodes with directed links to subordinate blocks
(nodes), as illustrated in Fig. 3 for structured programs.

The sequence begins with G,, the null graph, and winds
up, K stages later, at G = Gy, the entire program graph.
For convenience, I will assume that each of the stages of
work in between increases the size of the graph by 1/K-th
of the total final program graph size; that is,

G
Gl G =1

Now let me define the scope of control Cy(n) of a node
non Gy as

Ci(n) = {m| a path exists from n to m on G}

Similarly, I shall define the scope of error Si(n) of a node
n on Gy as

Sk(n) = {m| an error in n requires changing m on Gy}

In words, the scope of control of a node n is the set of all
nodes whose corresponding code is connected with the
evaluation of the function represented by N. The scope
of error of a node n is the set of all nodes whose corre-
sponding code must be altered, should an error be found
at n.

Intuitively, it seems reasonable that Si(n), more often

than not, contains Cy(n), because if an error is found at n,
then all subfunctions of n will probably have to be reex-

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

amined, as well as some other nodes connected to n in
ways other than control. In a highly modular program,
we can, in fact, probably estimate Si(n) = Cy(n).

A. Development Cycle

Let us now suppose that the program at stage k — 1
has resulted in G;_,, and that the extension to G, is about
to commence. Then iteratively, let a version, call it G,
of G; be developed and evaluated until no errors are
found, whereupon we rename Gi as G, as shown in
Fig. 4. Now define

AGkr = (Gr U Giy) — (G N Giy)

and separate AGy, into altered old code Si(e;, - ,e,,) and
added new code, VG; the nodes'e, -+ ,e;, were found to
be in error during the work stage.

Let now the cost of this stage be represented by the
formula

Cost (k) = $.,]VGx| + $:|Skles, -~ es) |

This cost presumes that both new code and alterations (in
total lines of code) can be produced at uniform cost rates
per program node; different cost rates apply when writing
new code than repairing erroneous code.

The total cost to produce a program of N nodes under
these assumptions is then

K
Cioi =8N + 8, lek<eb ebk)l
k=1

The number of nodes N a program contains should not
be so much a function of the production method as the
function that is to be performed; hence, the minimization
of programming cost is effected primarily by reduction
of the second term in the cost equation.

B. Error Penetration

For large programs, it seems intuitive, except for nodes
near the bottom of the graph, that the magnitude of the
scope of control of a node n is approximately related to
the graph size in an exponential way, where the exponent
is roughly the fractional number of levels between that
node and the “bottom” of the subgraph dominated by n,
in relation to the total number of levels in the graph. This
is illustrated in Fig. 5. In a modular program, since

91

S(n) = C(n), the same can probably be said about the
scope of error, as well. Hence, let us define A(n), the
error-penetration level of node n in the graph Gy, as

In|Su(n)|
M(n) - In| G|
so that we can write
(n)] = |G e

where 0 < A(n) <1

Now since the development cycle found no errors in
G-, prior to embarkation towards G, errors found sub-
sequently in Gy, arise mainly from assumptions made at
stage k — 1 not supportable at stage k. It is thus the addi-
tion of new nodes that has allowed the discovery of
CITOTS,

Let it therefore be assumed that the number of dis-
covered errors is proportional to the number of added
nodes (N/K) at stage n, and that the errors have non-
overlapping scopes:

b. =DbN/K

-
>

/

’ebk>| = Z,le)‘k(m

i

ISien, -

N/N

[KN/K (e

-1

~

f

Now, let it be supposed that the development process
can maintain a uniform (average) error penetration
throughout the implementation activity; that is, suppose
Mi(e;) = A. Then the total development cost would be

1+

Ctot - $1\N '4 $ [1 + O(I/K)]

and is independent of K, the number of development
stages, insofar as first-order effects are concerned. The
cost, of course, is least when A = 0 (zero error penetra-
tion), but I don’t know of any development process that
can achieve this. If N is very large, it is easy to see that
the principal development costs come from the “debug-
ging term,” which could increase as rapidly as N2, were
the improper development disciplines to be in effect.

92

C. Minimizing Development Costs

The way to minimize the cost is to find a development
procedure which maintains a uniformly low error penetra-
tion coeflicient. This coefficient A is roughly the fractional
number of levels an erroneous node e lies between the
top and the bottom of the subgraph controlled by e, when
the scope of control can be made the same as the scope
of error.

It then seems intuitive, from the above model, that one
should strive to augment G,., to reach G, by some
method which adds those new nodes to Gy_, which have
the least scopes of error inside G;_,-and maximum out-
side; one should strive also to keep the error scope within
the scope of control as nearly as possible; and the starting
work stage should choose G, as that set of nodes having
the greatest scope of error in G, since these will have zero
scope in G, (the null graph). This minimization procedure
is only intuitive, I haven’t actually gone through a proof
that it does, in fact, minimize the cost. Such a proof is
probably academic anyway, since 1 can’t actually com-
pute or measure scopes on a priori bases. However, it
scems unlikely that the optimum strategy will be too
different than the intuitive guidelines above.

The cost-minimizing strategy above is sometimes called
“hardest-out” programming; it depends on being able to
evaluate or estimate error penetration levels on a priori
basis. Such evaluations or estimations are often possible
if there is a preliminary design or baseline to work from.

If node penetration levels are not known a priori, then
the top-down development procedure is probably the best
that one can follow for several reasons. First, overall pro-
gram correctness can conceivably be checked at each
stage. Since the top node is the one with the greatest
scope of control, it is probably then also the one with the
greatest error scope. Adding nodes to the bottom of the
graph at cach stage keeps the scope of control of the
added nodes to a minimum (zero), and thus, errors are not
apt to be errors in control, but in connections between
nodes other than control. If top-down structured pro-
gramming is performed using a modular (in the con-
nectivity sense) approach, then the error scopes are
further reduced.

Hence, top-down hierarchic, modular, structured pro-
gramming seems to be the intuitive ideal approach
toward increasing programmer productivity (considering
cost as being proportional to programming time) when no
a priori estimates of error penetration levels of a program
are available.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

VI. Summary

1 did not intend, at the outset, to make this article one
extolling the virtues of Structured Programming, but
rather, to illustrate that models of programming are pos-
sible and that these models can tell us something about
the way programming projects should be approached for
increased effectiveness. Yet it is interesting to see, at least
it was for me, that in each case, Structured Programming,
as discipline, was capable of delivering the optimum
according to the model.

Oversimplified models can, of course, lie if they don’t
include enough of the real world in them. Intuitive mod-
els tend only to verify intuitive truths, and perhaps this
is why Structured Programming seemed so optimum in
the analyses. Did my personal bias toward Structured
Programming drive me to the models and to the assump-

tions used in getting the solution, or vice-versa. I truth-
fully don’t know. I do know I was trying to be objective.

I realize it is very easy to argue with oversimplifica-
tions, hypotheses, and assumptions. I realize that intuition
is not proof, and that perhaps several interpretations of
the results, in conflict with my own, are possible.

However, I now feel confident that basic studies, em-
pirical measurements, statistical analyses, and applied
research can someday provide less intuitive, more accu-
rate, more sophisticated, rigorous models and simulations
of the programming process. From such analyses, precise
guidelines and disciplines will be discovered for improv-
ing future software developments beyond our current
practical limitations, perhaps someday to their ultimate
imminent theoretical maxima.

References

1. Craig, G. R, et al,, “Software Reliability Study,” AD-787 784, TRW Systems
Group, Redondo Beach, Calif., Oct. 1974.

[85)

. Richards, F. R., “Computer Software: Testing, Reliability Models, and Quality

Assurance,” AD/A-001 260, Naval Post Graduate School, Monterey, Calif.,

July 1974.

3. Dijkstra, E. W, Dahl, O. J., and Hoare, C.A.R., Structured Programming,

Academic Press, New York, 1972.

4, Baker, F. T., “Chief Programmer Teams: Principles and Procedures,” Report
No. FSC 71-6012, IBM Corp., Gaithersburg, Md., Feb., 1972.

5. Tausworthe, R. C., Standardized Development of Computer Software, Jet
Propulsion Laboratory, Pasadena, Calif., (to be published).

6. Miller, G. A, “The Magical Number Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information,” Psychological Review, Vol. 63,

pp- 81-97, 1956.

7. Weinberg, G. M., The Psychology of Computer Programming, Van Nostrand
Reinhold Co., New York, pp. 28-40, 1971.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

93

NORMALIZED PRODUCTION RATE, PT/PI

READING/COMPREHENSION TIME

Tee (O

5 10 15 20 25
NUMBER OF WORKERS, W
Fig. 1. Normalized team production rate as a function
of team size, with communications
T T T T [T T T
Tep®
e + Tep(1-1)
-]
Tepl=1) I
|
|
T |
|
|
|
L 1 L I 1 1 l A
0 0.5 fopt 1.0

FRACTION OF TOTAL DETAIL, t

Fig. 2. Conceptual forms for readability indices for
comprehension of block function

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

Fig. 3. Representation of a structured program as a graph in
which nodes represent control connections. Each of P, F, and G,
may have further expansion

YES
GO o> o0 0 - %E(ILD o \éﬁLIDATE DR Yl
k
Cr-1 Gk
NO

€1, «os, € ERROR NODES
1 " by

Fig. 4. Program development cycle

e e o8 0 0 0
"o 000 0

Qe oo
o<—o¢.ooooo
O
Od—o..oo.nn

§ &

Fig. 5. Program graph which shows an almost exponential
relation between node levels and the scope of control

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

